Neural Recognition and Genetic Features Selection for Robust Detection of E-Mail Spam
نویسندگان
چکیده
In this paper a method for feature selection and classification of email spam messages is presented. The selection of features is performed in two steps: The selection is performed by measuring their entropy and a fine-tuning selection is implemented using a genetic algorithm. In the classification process, a Radial Basis Function Network is used to ensure robust classification rate even in case of complex cluster structure. The proposed method shows that, when using a two-level feature selection, a better accuracy is achieved than using one-stage selection. Also, the use of a lemmatizer or a stop-word list gives minimal classification improvement. The proposed method achieves 96-97% average accuracy when using only 20 features out of 15000.
منابع مشابه
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملA New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection
Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...
متن کاملOn Feature Extraction for Spam E-Mail Detection
Electronic mail is an important communication method for most computer users. Spam e-mails however consume bandwidth resource, fill-up server storage and are also a waste of time to tackle. The general way to label an e-mail as spam or non-spam is to set up a finite set of discriminative features and use a classifier for the detection. In most cases, the selection of such features is empiricall...
متن کامل